Repositório RCAAP

A precificação de opções para processos de mistura de brownianos

O estudo apresenta um modelo de precificação de derivativos financeiros baseado em processos de mistura de movimentos brownianos. A partir de uma modelagem probabilística, são apresentados ajustes ao modelo tradicional de Black-Scholes-Merton para contemplar situações em que o retorno do ativo-objeto não segue uma distribuição normal. O trabalho discute ainda um mecanismo de estimação de parâmetros da mistura de normais. O resultado da pesquisa possibilita a análise de preço de opções em situações mais gerais.

An extension of Birnbaum-Saunders distributions based on scale mixtures of skew-normal distributions with applications to regression models

The aim of this work is to present an inference and diagnostic study of an extension of the lifetime distribution family proposed by Birnbaum and Saunders (1969a,b). This extension is obtained by considering a skew-elliptical distribution instead of the normal distribution. Specifically, in this work we develop a Birnbaum-Saunders (BS) distribution type based on scale mixtures of skew-normal distributions (SMSN). The resulting family of lifetime distributions represents a robust extension of the usual BS distribution. Based on this family, we reproduce the usual properties of the BS distribution, and present an estimation method based on the EM algorithm. In addition, we present regression models associated with the BS distributions (based on scale mixtures of skew-normal), which are developed as an extension of the sinh-normal distribution (Rieck and Nedelman, 1991). For this model we consider an estimation and diagnostic study for uncensored data.

Ano

2018

Creators

Rocio Paola Maehara Sánchez

Relação entre níveis de significância Bayesiano e freqüentista: e-value e p-value em tabelas de contingência

O FBST (Full Bayesian Significance Test) é um procedimento para testar hipóteses precisas, apresentado por Pereira e Stern (1999), e baseado no cálculo da probabilidade posterior do conjunto tangente ao conjunto que define a hipótese nula. Este procedimento é uma alternativa Bayesiana aos testes de significância usuais. Neste trabalho, estudamos a relação entre os resultados do FBST e de um teste freqüentista, o TRVG (Teste da Razão de Verossimilhanças Generalizado), através de alguns problemas clássicos de testes de hipóteses. Apresentamos, também, todos os procedimentos computacionais utilizados para a resolução automática dos dois testes para grandes amostras, necessária ao estudo da relação entre os testes.

Cointegração fracionária em séries financeiras

O objetivo deste trabalho é apresentar alguns testes de cointegração fracionária para séries integradas de ordem d (dR), i.e., séries I(d), comparando-os com os testes de cointegração, cujo parâmetro d assume valores inteiros. O procedimento para os testes de cointegração fracionária utiliza reamostragens de bootstrap com reposição para gerar séries sob a hipótese nula de não cointegração. Estas reamostragens são então utilizadas para calcular os p-valores de algumas estatísticas de testes de regressão, tais como a estatística de Durbin-Watson e a estimativa do parâmetro de memória longa (d) residual. O poder destes testes é apresentado e comparado com os testes de cointegração, mostrando sua consistência. A aplicação destes testes a dados reais compara o modelo de correção de erros de cointegração com o modelo de correção de erros de cointegração fracionária utilizando a medida de erros quadráticos médios dos modelos ajustados.

Ano

2010

Creators

Victor Sakimoto Shie

Causalidade Granger em medidas de risco

Esse trabalho apresenta um estudo da causalidade de Granger em Risco bivariado aplicado a séries temporais financeiras. Os eventos de risco, no caso de séries financeiras, estão relacionados com a avaliação do Valor em Risco das posições em ativos. Para isso, os modelos CaViaR, que fazem parte do grupo de modelos de Regressão Quantílica, foram utilizado para identificação desses eventos. Foram expostos os conceitos principais envolvidos da modelagem, assim como as definições necessárias para entendê-las. Através da análise da causalide de Granger em risco entre duas séries, podemos investigar se uma delas é capaz de prever a ocorrência de um valor extremo da outra. Foi realizada a análise de causalidade de Granger usual somente para como comparativo.

Ano

2011

Creators

Patricia Nagami Murakami

Modelos de regressão beta inflacionados truncados

Os modelos de regressão beta e beta inflacionados conseguem ajustar adequadamente grande parte das variáveis do tipo proporção. No entanto, esses modelos não são úteis quando a variável resposta não pode assumir valores no intervalo (0,c) e assume o valor c com probabilidade positiva. Variáveis relacionadas a algum tipo de pagamento limitado entre dois valores, quando estudadas em relação ao seu valor máximo, possuem essas características. Para ajustar essas variáveis, introduzimos a distribuição beta inflacionada truncada (BIZUT), que é uma mistura de uma distribuição beta com suporte no intervalo (c,1) e uma distribuição trinomial que assume os valores zero, um e c. Propomos ainda um modelo de regressão para as situações em que a variável resposta tem distribuição BIZUT. Admitimos que todos os parâmetros da distribuição podem variar em função de variáveis preditoras. Além disso, o modelo permite que o parâmetro conhecido c varie entre as unidades populacionais. Para esse modelo são desenvolvidos diversos aspectos inferenciais, são obtidos resultados para as situações em que c é variável e são conduzidos estudos de simulação de Monte Carlo. Além disso, discutimos análise de resíduos, desenvolvemos análise de influência local e realizamos uma aplicação a dados reais de cartão de crédito.

Ano

2012

Creators

Gustavo Henrique de Araujo Pereira

Seleção de modelos econométricos não aninhados: J-Teste e FBST

A comparação e seleção de modelos estatísticos desempenham um papel fundamental dentro da análise econométrica. No que se trata especificamente da avaliação de modelos não aninhados, o procedimento de teste denominado de J-Teste aparece como uma ferramenta de uso freqüente nessa literatura. De acordo com apontamentos, entre os anos de 1984 e 2004 o J-Teste foi citado em 497 artigos pertinentes. Diferentemente do J-Teste, as abordagens Bayesianas possuem um potencial de aplicabilidade ainda pouco explorado na literatura, dado que são metodologicamente coerentes com os procedimentos inferenciais da econometria. Nesse sentido, o objetivo do presente trabalho é o de avaliar a aplicabilidade do procedimento de teste Bayesiano FBST para a comparação de modelos econométricos não aninhados. Implementando-se o FBST para os mesmos dados de estudos estatísticos relevantes na Teoria Econômica, tais como Bremmer (2003) (Curva de Phillips) e Caporale e Grier (2000) (determinação da taxa de juros real), constata-se que os resultados obtidos apontam para conclusões semelhantes daquelas delineadas com a utilização do J-Teste. Além disso, ao se utilizar a noção de função poder para avaliar ambos os procedimentos de teste, observa-se que sob certas condições as chances de erro expressas pelo Erro Tipo I e Erro Tipo II se tornam relativamente próximas.

Ano

2007

Creators

Fernando Valvano Cerezetti

Uma análise sobre duas medidas de evidência: p-valor e s-valor

Este trabalho tem como objetivo o estudo de duas medidas de evidência, a saber: o p-valor e o s-valor. A estatística da razão de verossimilhanças é utilizada para o cálculo dessas duas medidas de evidência. De maneira informal, o p-valor é a probabilidade de ocorrer um evento extremo sob as condições impostas pela hipótese nula, enquanto que o s-valor é o maior nível de significância da região de confiança tal que o espaço paramétrico sob a hipótese nula e a região de confiança tenham ao menos um elemento em comum. Para ambas as medidas, quanto menor forem seus respectivos valores, maior é o grau de inconsistência entre os dados observados e a hipótese nula postulada. O estudo será restrito a hipóteses nulas simples e compostas, considerando independência e distribuição normal para os dados. Os resultados principais deste trabalho são: 1) obtenção de fórmulas analíticas para o p-valor, utilizando probabilidades condicionais, e para o s-valor; e 2) comparação entre o p-valor e o s-valor em diferentes cenários, a saber: variância conhecida e desconhecida, e hipóteses nulas simples e compostas. Para hipóteses nulas simples, o s-valor coincide com o p-valor, e quando as hipóteses nulas são compostas, a relação entre o p-valor e o s-valor são complexas. No caso da variância conhecida, se a hipótese nula for uma semi-reta o p-valor é majorado pelo s-valor, se a hipótese é um intervalo fechado a diferença entre as duas medidas de evidência diminui conforme o comprimento do intervalo da hipótese testada. No caso de variância desconhecida e hipóteses nulas compostas, o s-valor é majorado pelo p-valor para valores pequenos do s-valor, por exemplo, quando o s-valor é menor do que 0.05.

Ano

2016

Creators

Eriton Barros dos Santos

Estratégias para o desenvolvimento de modelos de credit score com inferência de rejeitados.

Modelos de credit score são usualmente desenvolvidos somente com informações dos proponentes aceitos. Neste trabalho foram consideradas estratégias que podem ser utilizadas para o desenvolvimento de modelos de credit score com a inclusão das informações dos rejeitados. Foram avaliadas as seguintes técnicas de inferência de rejeitados: classificação dos rejeitados como clientes Maus, parcelamento, dados aumentados, uso de informações de mercado e ainda a estratégia de aceitar proponentes rejeitados para acompanhamento e desenvolvimento de novos modelos de risco de crédito. Para a avaliação e comparação dos modelos foram utilizadas as medidas de desempenho: estatística de Kolmogorov-Smirnov (KS), área sob a curva de Lorentz (ROC), área entre as curvas de distribuição acumulada dos escores (AEC), diferença entre as taxas de inadimplência nos intervalos do escore definidos pelos decis e coeficiente de Gini. Concluiu-se que dentre as quatro primeiras técnicas avaliadas, o uso de informaçõoes de mercado foi a que apresentou melhor desempenho. Quanto à estratégia de aceitar proponentes rejeitados, observou-se que há um ganho em relação ao modelo ajustado só com base nos proponentes aceitos.

Ano

2008

Creators

Mauro Correia Alves

Seleção bayesiana de variáveis em modelos multiníveis da teoria de resposta ao item com aplicações em genômica

As investigações sobre as bases genéticas de doenças complexas em Genômica utilizam diversos tipos de informação. Diversos sintomas são avaliados de maneira a diagnosticar a doença, os indivíduos apresentam padrões de agrupamento baseados, por exemplo no seu parentesco ou ambiente comum e uma quantidade imensa de características dos indivíduos são medidas por meio de marcadores genéticos. No presente trabalho, um modelo multiníveis da teoria de resposta ao item (TRI) é proposto de forma a integrar todas essas fontes de informação e caracterizar doenças complexas através de uma variável latente. Além disso, a quantidade de marcadores moleculares induz um problema de seleção de variáveis, para o qual uma seleção baseada nos métodos da busca estocástica e do LASSO bayesiano são propostos. Os parâmetros do modelo e a seleção de variáveis são realizados sob um paradigma bayesiano, no qual um algoritmo Monte Carlo via Cadeias de Markov é construído e implementado para a obtenção de amostras da distribuição a posteriori dos parâmetros. O mesmo é validado através de estudos de simulação, nos quais a capacidade de recuperação dos parâmetros, de escolha de variáveis e características das estimativas pontuais dos parâmetros são avaliadas em cenários similares aos dados reais. O processo de estimação apresenta uma recuperação satisfatória nos parâmetros estruturais do modelo e capacidade de selecionar covariáveis em espaços de dimensão elevada apesar de um viés considerável nas estimativas das variáveis latentes associadas ao traço latente e ao efeito aleatório. Os métodos desenvolvidos são então aplicados aos dados colhidos no estudo de associação familiar \'Corações de Baependi\', nos quais o modelo multiníveis se mostra capaz de caracterizar a síndrome metabólica, uma série de sintomas associados com o risco cardiovascular. O modelo multiníveis e a seleção de variáveis se mostram capazes de recuperar características conhecidas da doença e selecionar um marcador associado.

Ano

2014

Creators

Tiago de Miranda Fragoso

Modelos de regressão lineares mistos sob a classe de distribuições normal-potência

Neste trabalho são apresentadas algumas extensões dos modelos potência-alfa assumindo o contexto em que as observações estão censuradas ou limitadas. Inicialmente propomos um novo modelo assimétrico que estende os modelos t-assimétrico (Azzalini e Capitanio, 2003) e t-potência (Zhao e Kim, 2016) e inclui a distribuição t de Student como caso particular. Este novo modelo é capaz de ajustar dados com alto grau de assimetria e curtose, ainda maior do que os modelos t-assimétrico e t-potência. Em seguida estendemos o modelo t-potência às situações em que os dados apresentam censura, com alto grau de assimetria e caudas pesadas. Este modelo generaliza o modelo de regressão linear t de Student para dados censurados por Arellano-Valle et al. (2012). O trabalho também introduz o modelo linear misto normal-potência para dados assimétricos. Aqui a inferência estatística é realizada desde uma perspectiva clássica usando o método de máxima verossimilhança junto com o método de integração numérica de Gauss-Hermite para aproximar as integrais envolvidas na função de verossimilhança. Mais tarde, o modelo linear com interceptos aleatórios para dados duplamente censurados é estudado. Este modelo é desenvolvido sob a suposição de que os erros e os efeitos aleatórios seguem distribuições normal-potência e normal- assimétrica. Para todos os modelos estudados foram realizados estudos de simulação a fim de estudar as suas bondades de ajuste e limitações. Finalmente, ilustram-se todos os métodos propostos com dados reais.

Ano

2017

Creators

Roger Jesus Tovar Falon

Semi-parametric generalized log-gamma regression models

The central objective of this work is to develop statistical tools for semi-parametric regression models with generalized log-gamma errors under the presence of censored and uncensored observations. The estimates of the parameters are obtained through the multivariate version of Newton-Raphson algorithm and an adequate combination of Fisher Scoring and Backffitting algorithms. Through analytical tools and using simulations the properties of the penalized maximum likelihood estimators are studied. Some diagnostic techniques such as quantile and deviance-type residuals as well as local influence measures are derived. The methodologies are implemented in the statistical computational environment R. The package sglg is developed. Finally, we give some applications of the models to real data.

Ano

2017

Creators

Carlos Alberto Cardozo Delgado

Modelos longitudinais de grupos múltiplos multiníveis na teoria da resposta ao item: métodos de estimação e seleção estrutural sob uma perspectiva bayesiana

No presente trabalho propomos uma estrutura bayesiana, através de um esquema de dados aumentados, para analisar modelos longitudinais com grupos mútiplos (MLGMTRI) na Teoria da Resposta ao Item (TRI). Tal estrutura consiste na tríade : modelagem, métodos de estimação e métodos de diagnóstico para a classe de MLGMTRI. Na parte de modelagem, explorou-se as estruturas multivariada e multinível, com o intuito de representar a hierarquia existente em dados longitudinais com grupos múltiplos. Esta abordagem permite considerar várias classes de submodelos como: modelos de grupos múltiplos e modelos longitudinais de um único grupo. Estudamos alguns aspectos positivos e negativos de cada uma das supracitadas abordagens. A modelagem multivariada permite representar de forma direta estruturas de dependência, além de possibilitar que várias delas sejam facilmente incorporadas no processo de estimação. Isso permite considerar, por exemplo, uma matriz não estruturada e assim, obter indícios da forma mais apropriada para a estrutura de dependência. Por outro lado, a modelagem multinível propicia uma interpretação mais direta, obtenção de condicionais completas univariadas, fácil inclusão de informações adicionais, incorporação de fontes de dependência intra e entre unidades amostrais, dentre outras. Com relação aos métodos de estimação, desenvolvemos um procedimento baseado nas simulações de Monte Carlo via cadeias de Markov (MCMC). Mostramos que as distribuições condicionais completas possuem forma analítica conhecida e, além disso, são fáceis de se amostrar. Tal abordagem, apesar de demandar grande esforço computacional, contorna diversos problemas encontrados em outros procedimentos como: limitação no número de grupos envolvidos, quantidade de condições de avaliação, escolha de estruturas de dependência, assimetria dos traços latentes, imputação de dados, dentre outras. Além disso, através da metodologia MCMC, desenvolvemos uma estrutura de seleção de matrizes de covariâncias, através de um esquema de Monte Carlo via Cadeias de Markov de Saltos Reversíveis (RJMCMC). Estudos de simulação indicam que o modelo, o método de estimação e o método de seleção produzem resultados bastante satisfatórios. Também, robustez à escolha de prioris e valores iniciais foi observada. Os métodos de estimação desenvolvidos podem ser estendidos para diversas situações de interesse de um modo bem direto. Algumas das técnicas de diagnóstico estudadas permitem avaliar a qualidade do ajuste do modelo de um modo global. Outras medidas fornecem indícios de violação de suposições específicas, como ausência de normalidade para os traços latentes. Tal metodologia fornece meios concretos de se avaliar a qualidade do instrumento de medida (prova, questionário etc). Finalmente, a análise de um conjunto de dados real, utilizando-se alguns dos modelos abordados no presente trabalho, ilustra o potencial da tríade desenvolvida além de indicar um ganho na utilização dos modelos longitudinais da TRI na análise de ensaios educacionais com medidas repetidas em deterimento a suposição de independência.

Ano

2008

Creators

Caio Lucidius Naberezny Azevedo

Modelos mistos lineares elípticos com erros de medição

O objetivo principal deste trabalho é estudar modelos mistos lineares elípticos em que uma das variáveis explicativas ou covariáveis é medida com erros, sob a abordagem estrutural. O trabalho é apresentado numa notação longitudinal, todavia a covariável medida com erros pode ser observada temporalmente ou como medidas repetidas. Assumimos uma estrutura hierárquica apropriada com distribuição elíptica conjunta para os erros envolvidos, porém a inferência é desenvolvida sob uma abordagem marginal em que consideramos a distribuição marginal da resposta e da variável medida com erros. Procedimentos de influência local em que o esquema de perturbação é escolhido de forma apropriada são desenvolvidos. Um exemplo para motivação é apresentado e analisado através dos procedimentos apresentados neste trabalho. Detalhamos nos apêndices os principais procedimentos necessários para o desenvolvimento do modelo proposto.

Ano

2014

Creators

Joelmir André Borssoi

\"Regressão beta\"

Muitos estudos em diferentes áreas examinam como um conjunto de variáveis influencia algum tipo de percentagem, proporção ou frações. Modelos de regressão lineares não são satisfatórios para modelar tais dados. Uma classe de modelos de regressão beta que em muitos aspectos é semelhante aos modelos lineares generalizados foi proposto por Ferrari e Cribari--Neto~(2004). A resposta média é relacionada com um predictor linear por uma função de ligação e o predictor linear envolve covariáveis e parâmetros de regressão desconhecidos. O modelo também é indexado por um parâmetro de precisão. Smithson e Verkuilen,(2005), entre outros, consideram o modelo de regressão beta em que esse parâmetro varia ao longo das observações. Nesta tese foram desenvolvidas técnicas de diagnóstico para os modelos regressão beta com dispersão constante e com dispersão variável, sendo que o método e influência local (Cook,~1986) mostrou-se decisivo, inclusive no sentido de identificar dispersão variável nos dados. Adicionalmente, avaliamos através de estudos de simulação o desempenho de estimadores de máxima verossimilhança para o modelo de regressão beta com dispersão variável, as conseqüências de estimar o modelo supondo dispersão constante quando de fato ela é variável e de testes assintóticos para testar a hipótese de dispersão constante. Finalmente, utilizando um esquema de bootstrap (Davison e Hinkley,1997), desenvolvemos um procedimento de obtenção de limites de predição para o modelo de regressão com dispersão constante. Ilustramos a teoria desenvolvida com várias aplicações a dados reais.

Ano

2007

Creators

Patricia Leone Espinheira Ospina

Inferência bayesiana em modelos de dinâmica de populações biológicas com termo de perturbação assimétrico

Neste trabalho de tese, estudamos o modelo de crescimento logístico de populações biológicas utilizando a abordagem de espaço de estados. Os estados não observados são as biomassas anuais, a equação de observação é linear e a equação de estado é não linear. As distribuições de probabilidade utilizadas para os termos de erro de observação aditivos são: Normal, t-student, Skew-normal e Skew-t. As distribuições Log-normal, Log-t, Log-skew-normal e Log-skew-t são consideradas para os erros de observação multiplicativos. A inferência nos modelos é realizada considerando-se métodos Bayesianos e as distribuições a posterior de interesse são aproximadas utilizando-se algoritmos MCMC e a aproximação de Laplace. Apresentamos duas aplicações, a primeira referente a pesca de camarão marinho na costa do Chile, na qual a variável observável é o rendimento médio anual de pesca (captura por unidade de esforço média). Na segunda é considerada a pesca de lagostim vermelho na costa de Chile, na qual além do rendimento médio anual da pesca, observa-se as estimativas anuais de biomassa vulnerável, obtidas através de estudos de área varrida. Para o primeiro conjunto de dados, os modelos com erros de observação multiplicativos têm melhor performance, particularmente os modelos Log-skew-normal e Log-skew-t. Considerando estes resultados, no segundo caso utilizamos somente erros multiplicativos e a distribuição a posteriori preditiva mostra que cada variável observável parece ter sua própria família de distribuição de probabilidades. Além disso, os resultados também revelam uma crescente complexidade do modelo ao incorporar a classe mais geral de distribuições assimétricas.

Ano

2016

Creators

Carlos Patricio Montenegro Silva

Modelos de regressão para dados censurados sob distribuições simétricas

Este trabalho tem como objetivo principal apresentar uma abordagem clássica e Bayesiana dos modelos lineares com observações censuradas, que é uma nova área de pesquisa com grandes possibilidades de aplicações. Aqui, substituimos o uso convencional da distribuição normal para os erros por uma família de distribuições mais flexíveis, o que nos permite lidar de forma mais adequada com observações censuradas na presença de outliers. Esta família é obtida através de um mecanismo de fácil construção e possui como casos especiais as distribuições t de Student, Pearson tipo VII, slash, normal contaminada e, obviamente, a normal. Para o caso de respostas correlacionadas e censuradas propomos um modelo de regressão linear robusto baseado na distribuição t de Student, desenvolvendo um algoritmo tipo EM que depende dos dois primeiros momentos da distribuição t de Student truncada.

Ano

2014

Creators

Aldo William Medina Garay

Novos modelos estatísticos de resposta limitada para dados de compreensão leitora com estruturas dependentes

No campo da modelagem, na aplicação prática encontramos conjuntos de dados os quais apre- sentam relações que dependem do instrumento de medição ou das unidades da análise localizadas no espaço as mesmas que possuem características comúns com outras unidades ao redor delas. Simultaneamente, as variáveis de resposta têm a característica de estar restrita no intervalo unitário. Ambas situações, a dependência e a restrição do soporte nas variáveis respostas, presentes na realidade, são abordadas de forma conjunta na presente tese. As relações de dependência geradas pelo instrumento de medição, como o caso das provas de Compreensão leitora são abordadas com a inclusão de efeitos aleatórios, os quais conseguem modelar relaçoes para estruturas específicas geradas pelo instrumento de medição. As relações geradas na análise de unidades com localização espacial incluem também um efeito aleatório, sui generis, com a intenção de modelar tais relações no contexto dos modelos de regressão. Ademais, o suporte das variáveis são modelados considerando distribuições com suporte no intervalo (0,1) como é o caso das distribuições Beta, Simplex ou Kumaraswamy. Estas propriedades específicas dos conjuntos de dados analizados têm o propósito de sugerir um modelo geral o qual abrange as relações de dependência e respostas limitadas de forma conjunta com a intenção de apresentar no presente trabalho modelos adequados com a realidade, a qual é evidenciada nos conjuntos de dados de Compreensão Leitora analizados no presente trabalho, para atingir o objetivo de obter estimativas realistas.

Ano

2020

Creators

Sandra Elizabeth Flores Ari

Avaliação de métodos de imputação na variável Receita das empresas da Pesquisa Anual de Comércio - PAC-IBGE

O presente trabalho utiliza as informações da Pesquisa Anual do Comércio - PAC, uma das quatro pesquisas econômicas estruturais do IBGE, para avaliar o Modelo de Imputação atual da pesquisa comparando-o com outros modelos disponíveis na literatura. Foi feito um recorte da base da PAC-IBGE dos anos de 2014 e 2015 e foram testados vinte modelos de imputação. Na PAC, tem sido observado um aumento do impacto das não-respostas nas estimativas de seus totais. Isto deriva da alta assimetria das variáveis econômicas em conjunto com o pequeno número de empresas de alguns estratos, somados ainda ao aumento populacional de algumas atividades econômicas - e, por consequência, dos pesos amostrais - e ainda do elevado número de mortes (fechamento) de empresas pequenas. Tais problemas apresentados geram a necessidade de se estudar alternativas de tratamento para essas empresas não-respondentes. Os modelos foram analisados selecionando algumas empresas aleatoriamente e assumindo que elas não tivessem respondido à pesquisa. Posteriormente, essas empresas foram submetidas aos modelos de imputação selecionados e os resultados foram avaliados utilizando Erro Quadrático Médio (EQM) e Variação Percentual (VP) dos totais estimados contra o real. Foi escolhida a variável de RECEITA para ser usada nos testes. Os modelos utilizados podem ser agrupados em quatro grupos: de médias de respondentes; através de uma regressão com uso de variáveis auxiliares de cadastro; média dos respondentes mais próximos através de uma função distância; e através de uma regressão dos respondentes mais próximos com uso de uma função distância. Ao final das análises, verificou-se que apesar de alguns modelos também terem tido bons desempenhos, não foi observado um fator relevante que indique a troca do modelo atual de imputação utilizado na PAC-IBGE.

Ano

2019

Creators

João Carlos Silva Rodrigues

A distribuição Kumaraswamy normal: propriedades, modelos de regressão linear e diagnóstico

No presente trabalho, são estudadas propriedades de uma distribuição pertencente à classe de distribuições Kumaraswamy generalizadas, denominada Kumaraswamy normal, formulada a partir da distribuição Kumaraswamy e da distribuição normal. Algumas propriedades estudadas são: expansão da função densidade de probabilidade em série de potências, função geradora de momentos, momentos, função quantílica, entropia de Shannon e de Rényi e estatísticas de ordem. São construídos dois modelos de regressão lineares do tipo localização-escala para a distribuição Kumaraswamy normal, um para dados sem censura e o outro com a presença de observações censuradas. Os parâmetros dos modelos são estimados pelo método de máxima verossimilhança e algumas medidas de diagnóstico, como influência global, influência local e resíduos são desenvolvidos. Para cada modelo de regressão é realizada uma aplicação a um conjunto de dados reais.

Ano

2019

Creators

Elizabete Cardoso Machado